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Introduction 

Of increasing interest to NASA and the fluid mechanics commUnity in general has 

- been the development of accurate and efficient methods to treat hypersonic rarefied fiow 

problems. Hypersonic flows are characterised by large Mach numbers (:If > 5 )  and rareEed 

flows are characterised by Iarge Knu&en n u d e n  (K, > 0.1). These conditions are 

encountered by flight vehicies operatins in the upper atmosphere (altitude 50-150 km) and 

are of consequeace in the des ig  of future vehicles such ai the Xationai -Aerospace Plane 

(3.L%‘) and Aero-Assisted Orbital Transfer Vehicles (.4OTV’s). The standard method for 

solving hypersonic rarefied ff ow problems is through direct particle simulation mechoh1-’7 
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however the huge computational capacity required to solve even a modest sized problem 

of practical interest has severeIy restricted their use. 

The present paper outlines a very efficient direct particle simulation algorithm de- 

veloped at Stanford University by Donald Baganoff and his students6 and proceeds to 

describe a fine-grained pardelized implementation of this algorithm on a Thinking Ma- 

chines Connection Machine Model 2 (CM2). 

Description of Algorithm 

For a small discrete time step, the molecular motion and collision terms of the Boltz- 

mann equation may be decoupled' . This allows the simulated particle flow to be considered 

in terms of two consecutive but distinct events in one time step, specifically there is a col- 

lisionles motion of d particles followed by a motionless collision of those particles which 

have been identified as colliding partners. The collisionless motion of particles is strictly 

deterministic and reversible. However, the collision of particles is treated on a probabilistic 

basis. This is the characteristic feature of simulation methods which distinguish them from 

the methods of molecular dynamics. 

The state of the system is updated on a per time step basis. A single time step is 

comprised of four sub-steps: 

I) collisionless motion of particles 

2) enforcement of. boundary conditions 

3) selection of collision partners 

4) collision of selected collision partners 

The followin$ sections will briefly consider these sub-step in general and then consider 

in detail their h e  grain parallel implementation on a Connection Machine. For greater 

general detail and a vectorized implementation see McDonald and Baganop. 
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Particle Motion 

Each particle i has a position vector 5; and a translational velocity vector . ‘ is On each 

time step, every particle’s position vector is updated simply by 

By using a time scale normalised by a time step, this simplifies to 

Boundary Conditions 

If the aim is to solve for the flow around some aerodynamic body, it is usual to set up 

physical space to  simulate a wind tunnel. In such a set up boundaries can be of two types 

which here will be called “hard” boundaries and “soft’’ boundaries. Hard boundaries 

consist of solid impermeable barriers, specifically the walls of the wind tunnel and the 

object in the test section. These are most easily implemented as inviscid boundaries 

although the no slip condition with an isothermal or adiabatic wall represents the more 

physical situation. To simulate inviscid boundaries the particles are specularly reflected 

from surfaces; this sort of boundary allows the direct comparison of simulation results with 

2D inviscid theoretical results thereby providing an important check in the development 

of new code. 

Soft boundaries delimit regions where particles pass into sources or sinks. The down- 

stream boundary of the wind tunnel is an example of a sink, all particles exiting down- 

stream are removed from the simulation. For physical consistency this constrains the 

downstream boundary to be supersonic. 
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The upstream boundary may be implemented either as a soft or hard boundary, the 

choice depends on the target architecture. As a soft boundary the upstream region acts 

as a source of particles at the freestream conditions. The strength of this source has to be 

controlled to maintain a constant freestream density. This is a useful implementation on 

vector or serial architectures where the spawning of new particles is simple and efficient due 

to the global data structures these architectures best support6. On parallel architectures 

it is useful to implement a hard boundary in the upstream region. This boundary acts 

as a plunger, moving with the freestream until it crosses a predefined trigger point which 

causes the plunger to be withdrawn and enough new particles to be introduced to i l l  the 

void. In this manner the introduction of new particles can be delayed an arbitrary number 

of time steps. 

Selection of Collision Partners 

I 
I The selection of collision partners is made by considering the interactive potential of 

collision candidates. It is important to distinguish between candidates for collision and 

actual partners in a collision. To identify collision candidates in an efficient manner it 

is necessary to introduce a grid of cells associated with discrete regions in the simulated 

space. Since particles occupying the same cell are neighbouring particles in physical space, 

these then are considered collision candidates. 

I 
I ' 

McDonald and Baganop argue for small, geometrically simple and similar cells and 

such are implemented here. This leads to a rectangular grid (in two dimensions) of square 

celIs of unit normal width. 
I 

With the set of collision candidates identified, it is necessary to select suitable collision 

partners. The most common approach is that used in Bird's Monte Carlo method'-* where 

pairs of molecules within a cell are randomly chosen and collided until the asynchronous 

I 
I 
I 
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I cell time exceeds the global simulation time. Pryor and Burns7 describe a vectorized im- 

plementation of this method but clearly it suffers a strong dependence on the number of 

cells in the simulation. At best this method can be parallelized only at the cell level and 

thus is strongly influenced by statistical fluctuations in the cell populations. Nanbu’ intro- 

duces the idea of a probability of collision which he applies unconditionally to decide on a 

collision and then on a conditional basis to select a collision partner. This approach has a 

better theoretical foundation however it has the drawback of being an O ( N 2 )  calculation. 

Plossg shows how Nanbu’s scheme can be implemented as O ( N )  and vectorized thus yield- 

ing performance comparable to Bird’s scheme. However, both Ploss’s and Nanbu’s scheme 

conserve only the mean energy and momentum of a cell and their extension to reacting 

flows is questionable. 

McDonald and Baganop introduce a selection rule based on collision probability and 

which allows a fine grained parallelization while also conserving energy and momentum in 

a collision. In this approach, a probability of collision is computed for each pair of collision 

candidates and collisions are carried out in accordance with this probability. The decision 

to perform a collision is applied on the individual candidate pairs and not on the cell as a 

whole. Consequently, like Ploss’s scheme, the selection rule can be parallelized at a particle 

level. 

The time counter approach uses a mean time for collision given by 

where n is the local number density, u is the collision cross section and Z is the mean 

molecular speed. McDonald and Baganoff derive a probability of collision 

P, = At/t, (4) 

valid only if At,  the time step, is at least 3 or 4 times smaller than the mean value of t,. 

This constraint ensures that the probability of more than one collision in a single time step 

5 



is negligibly small. Combining (3) and (4) yields 

which is the most general form of the selection rule. For power law molecules, (5) becomes 

(6) 1 -4 /a  
p c  - ng 

where g is the relative velocity of collision and Q is the exponent for the inverse power law 

being used. It is useful to scale P, to the desired upstream mean free path, such that 

E / PaJ = ( 72 / n 00 ( 9 /goo ) -4'a, (7) 

where the subscript 00 indicates freestream conditions. Finally, for the special case of a 

Maxwell molecule, Q = 4 and (7) reduces to 

The Collision Algorithm 

The algorithm presented here is that developed by McDonald and Baganop and 

considers collisions between perfect diatomic molecules. The outcome of a collision of two 

particles is, for each particle, a new velocity and internal energy subject to the constraints of 

conservation of linear momentum and energy. In this model, rotational energy is accounted 

for by a rotational velocity vector F'such that 

1 
2 

For a diatomic gas, ?has two components (two degrees of freedom in rotation) and the 

translational velocity ti has three components (three degrees of freedom in translation). 

Conservation of energy can then be written as 

( 9 )  Erot = -m(F 3. 
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or 

where 

and the prime indicates a post-collision value (these equations correspond to eqs. 

of reference 6). Conservation of linear momentum can be written as 

Then, by assuming 

the two conservation equations can be combined as a single equation 

Equation (18) forms the basis of the collision algorithm. One begins by computing 

the relative and mean pre-collision velocity components for each collision partner. It is im- 

portant to note that any post-collision values that satisfy (18) are valid. Computationally, 

the simplest way to arrive at five values that satisfy (18) is to use the same pre-collision 

values calculated by eqs. (12) and (13). By re-ordering these values in a random fashion 

and assigning each element a random, equally-probable sign, one arrives at a valid and 

completely new post-collision relative velocity vector. The post-collision velocity vector 

for the particles is now easily obtained. For the fist particle the new relative velocity is 
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added to the mean velocity and for the second particle the relative velocity is subtracted 

from the mean velocity. 

IMPLEMENTATION ON THE CONNECTION MACHINE 

Data Structure - Processor Mapping 

A key issue in the implementation of a particle simulation on the Connection Ma- 

chine is the mapping of data to processors. Two approaches may be taken-one can map 

computational cells to individual processors or one can map individual particles to indi- 

vidual processors. Considering the cells-to-processors mapping first, it is clear that this 

mapping will suffer from inefficient communication and poor load balancing. Communica- 

tion between processors will occur when particles exit one cell to enter another. In order 

to avoid conflicts, a cell must only communicate with a single neighbour at a time. In 

two dimensions this implies eight distinct communication events with only one eighth of 

the processors active in any single event. The situation is considerably worse in three 

dimensions where a cell must communicate with twenty-six neighbours. 

~ 

The load balancing associated with this mapping displays both inefficient hardware 

utilization and wasteful memory management. Not only are computations slowed to the 

I rate of the most populated cell, but also the memory assigned to each processor must be 

great enough to accomodate the highest density of particles encountered in the simulation. 

Consequently, throughout most of the calculation a great number of processors will be idle 

with large parts of their memory unused. 

These inefficiencies can be completely eliminated by choosing a particles-to-processors 

mapping. On a heuristic basis, one need only consider that the finest grained parallelism of 

a particle simulation exists at the particle level whence the particles-teprocessors mapping I 
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ought to be most compatible with this architecture. Further justification for this mapping 

will be given as the implementation is outlined in detail. However, at this point it is 

important to note that the Connection Machine’s support of “virtual pro~essors”’~, i.e. 

creating the impression of two or more processors from a single physical processor, allows 

for a great deal of generality in the processor mapping. Consequently, there is no limit on 

problem size with the chosen mapping other than that of the total memory capacity of the 

machine. 

In further discussing the present implementation of a particle simulation, it is useful to 

make the distinction between the “physical” state of a particle and the “computational” 

state of a particle. For the perfect diatomic gas molecules of the model, the physical 

state of a particle is completely defined by its position and its translational and rotational 

velocities, i.e. In two dimensions this representation requires seven distinct 

values. The computational state of a particle includes as a subset the physical state, 

but adds information to this that makes the computation of a new physical state more 

efficient. The added information in the computational state can be completely derived from 

the physical state information or created independently. Specifically, the computational 

state of a particle adds to the physical state the cell index and a five element permutation 

vector (or permutation sequence). The cell index is a distinct index value that identifies 

the cell occupied by the particle. The permutation vector is a permutation of five numbers 

(0 through 4) used in the collision routine to re-order the relative velocity components. 

Zi, t i i ,  E .  

Particle Motion and Boundary Interaction 

The implementation of particle motion in the partic1e.s-to-processors mapping is I‘ery 

straightforward and perfectly load balanced. All particles simply add their velocity com- 

ponents to the appropriate position co-ordinate. All processors are active for this event. 
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In the present implementation the only geometry supported is an inclined flat plate. 

Particles requiring boundary interactions are identified by their position and this selected 

set of particles perform the appropriate action. Those particles exiting through the soft 

downstream boundary are removed from the physical space of the simulation and put in a 

separate reservoir. These particles are given velocities from a rectangular distribution with 

the same variance as the freestream, therefore after a few time steps collisions with other 

reservoir particles relaxes these to the correct Gaussian distributions. When new particles 

need to be introduced at the upstream boundary they are taken from this reservoir. 

The reservoir serves several purposes in this manner. With the particles-to-processors 

mapping, particles which are not used directly in the simulation, as in the start up transient 

phase of the wind tunnel simulation, represent an inefficiency in the form of idle processing 

power. Putting these particles in a separate reservoir and letting them collide amongst 

themselves is a way to get useful work from these otherwise idle processors. Without the 

reservoir, new particles would have to be initialised with freestream conditions and this 

would involve sampling directly from a Gaussian distribution which involves either costly 

calls to transcendental functions or repeated calls to a random number generator. Neither 

of these two options is as satisfying as simply picking up particles from a reservoir. 

Selection of Collision Partners 

Once the particles have been moved and all the boundary conditions enforced, each 

particle computes its occupying cell index. In order to identify collision candidates it is 

necessary to access all particles occupying the same cell. Before this can be done in an 

efficient manner, it is necessary to sort the particles by order of cell index. It should be 

noted that sorts are very efficiently implemented on the Connection Machine” and do not 

incur the large computational cost usually associated with sorts on sequential machines. 
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The sort is a crucial step in the implementation of this particle simulation algorithm. 

It introduces an overhead not present in the vectorized implementation6 but proves very 

rewarding for the rest of the algorithm. The primary purpose of the sort is to put all 

particles occupying a given cell into neighbouring addresses thus making it easy both to 

identify collision candidates and to sample macroscopic quantities from cells. Although 

this is the primary effect, the consequences of the sort are more subtle. Since each particle 

is assigned to a virtual processor, one can think in terms of a fixed amount of processing 

power per particle and in these terms the sort achieves a perfect dynamic load balance for 

the collision routine. In other words, the total processing power of the machine is evenly 

distributed amongst the computational cells of the simulation. 

, 

The collision of particles is the most computationdy intense part of the calculation, 

and achieving a perfect load balance here is crucial to the performance of the algorithm. 

Being able to  make full simultaneous use of all the Connection Machine processors is, for 

this architecture, the equivalent of being able to use vector pipelines in vector machines. 

Therefore one could say that the algorithm is “vectorized” on the Connection Machine. 

A further requirement of the sort is to change the order of particles within a cell 

between time steps. This is necessary because collision candidates are identified on an 

“even/odd” basis, i.e. all even numbered partners within a cell are eligible for collision 

with their odd numbered neighbour. This, in conjunction with the use of virtual processors, 

proves to be a very efficient arrangement because collision candidates are now guaranteed to 

be in the same physical processor, hence communication time is minimized for the collision. 

However, it is important that candidate partners change between time steps otherwise the 

situation arises where the same partners collide repeatedly leading to correlated velocity 

distributions. To obtain this additional randomization, the cell index of a particle is scaled 

by some constant factor and, before sorting, a random number less than the scale factor 

is added to it. Now sorting the particles no longer preserves the relative ordering within a 

cell and there is confidence in the statistical randomness of the collision candidate pairs. 
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Collision partners are selected from the candidate pairs by applying the selection rule 

given by (8). This requires specific knowledge of the cell density which can be best obtained 

on the Connection Machine by making use of the scan functions". 

Collision of Particles 

The collision of particles proceeds in the manner prescribed by the collision algorithm. 

The essential issue that needs to be addressed in the implementation is that of re-ordering 

the relative velocity components to arrive at the post-collision state. On the Connection 

Machine this is done by using the permutation vector which is part of the computational 

state of the particles. Of the two available permutation vectors, which one gets used is 

inconsequential, however to maintain statistically random collision outcomes it is desirable 

for particles to have different permutation vectors in succeeding time steps. The standard 

algorithm for creating random permutations is given by Knuth12 and an adaptation of 

this is implemented here. The approach taken is to initialise the particles with random 

permutations (taken from a table stored on the front end computer) and generate new 

permutations by performing random transpositions on the existing permutation. By a 

random transposition is meant the operation of arbitrarily switching the order of two 

randomly selected elements in the permutation sequence. Consider a permutation p' with 

n elements. If p ,  is the j t h  element of p'then transposition of the j t h  element with the first 

element produces the new permutation jj'. 

Aldous and Dioc~nis '~  prove that nlogn transpositions of this type are required to 

generate a new, statistically uncorrelated permutation. In the present implementation, for 

each collision a single random transposition of a particle's permutation vector is performed. 

It follows that 10 collisions are required before a particle has a completely new permutation 

vector. However the collision algorithm is only loosely bound to the randomness of the 
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permutation since randomization of the outcome is enhanced by random partner selection, 

consequently a single transposition per collision is found sufficient to ensure unbiased 

out comes. 

Specific Implementat ion Issues 

In order to obtain the best performance of this algorithm on the CM2, some very 

specific optimizations were implemented. Individual Connection Machine processors are 

bit serial and therefore most suited for integer computations. Although floating point 

computations are supported in hardware, a floating point implementation loses the power 

of bit addressability and much of the versatility afforded to integer calculations by the 

machine. These considerations led to an integer implementation of the simulation. In this 

implementation the physical state of a particle is stored in a 32 bit fixed point format with 

23 bits for precision. This compares favourably with the IEEE floating point standard 

which employs a 23 bit mantissa, however it now becomes neccessary to be aware of the 

effect of truncation and to perform some rounding where required. The IEEE standard 

employs three extra bits (the "guard" and "sticky" bits) to correctly round off results from 

operations such as division. In a fixed point format the result of division of two numbers is 

truncated if the number of bits required to correctly represent it is greater than the number 

of bits allocated in the format. This becomes a problem in the collision of particles when 

the relative and mean velocity components are computed (eqs. (12)-( 15)); the consistent 

truncation after division by 2 can lead to a significant loss in total energy in stagnation 

regions of the flow. The problem is solved by arbitrarily adding with uniform probability 

either 0 or 1 to the result of this division, in a statistical sense this achieves the correct 

rounding. Despite the extra computation required for this correction, there is a marked 

improvement in performance with an integer implementation. 

I 
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An addiditonal advantage of this implementation is the availability of a quick but 

dirty random number in the low order bits of a physical state quantity. This provides a 

random number of limited size and unspecified ditribution but finds use in low impact 

situations. Specifically, it is used during the sort to enhance mixing, and in the collision 

routine to choose a random transposition, to choose a random sign, and to correct the 

truncation error in the manner described above. 

Results 

To verify the validity of the code, the near-continuum flow over a 2D wedge was 

simulated and results were compared with the 2D theoretical results. Near continuum flow 

is simulated by setting the mean free path in the free stream to be zero. As a consequence, 

all collision candidates must collide and the number of collisions in a cell is just equal to 

half the number of particles in the cell. Presented in figures 1-3 is the density distribution 

for Mach 4 flow over a 30" wedge. A total of 512k particles were employed in this solution 

with 460000 particles actually in the flow and another 45000 particles in the reservoir. The 

grid had dimensions 98x64; the wedge was place 20 cells from the upstream b o u n d q  and 

was 25 cells wide at the base. The simulation was run for 1200 time steps to reach steady 

state and then time averaged for a further 2000 timesteps to generate the solution. 

Figure 1 shows the density contours in the solution. The theoretical shock angle for 

this flow is 45" and the solution matches this exactly. Furthermore, from the Rankine- 

Hugoniot relations we expect the density behind the shock to be 3.7 times the freestream 

value, this again is reflected in the solution. The Prandtl-Meyer expansion fan around 

the corner of the wedge was also compared to theory and.found to be correct. The shock 

thickness can be measured from figure 1 and is equal to 3 cell widths. 

Figure 2 shows a perspective view of the density surface. This figure clearly depicts 
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the fully developed wake shock created when the fluid which has expanded around the 

corner of the wedge meets the bottom surface of the wind tunnel. Evidence of this can 

also be seen in figure 1. Figure 3 presents an expanded view of this surface in the stagnation 

region by the wedge. This figure is useful for studying the approach that the simulation 

takes to the theoretical rise in density behind the shock. The jagged edge in the figure 

represents the wedge surface. The wedge surface is smooth however the grid is rectangular, 

and where cells are divided by the wedge special allowance must be made for the fractional 

cell volume when employing the selection rule (equation (8)) and in computing the time 

average cell density. The plotting package used for generating these surfaces did not allow 

the same special consideration for fractional cell volumes, whence the jagged edge. 

To examine the ability of the method to properly simulate rarefied flows, the same 

simulation was run but with the mean free path adjusted to be 0.5 cell widths in the 

freestream. The molecular model is for perfect diatomic Maxwell molecules. The wedge is 

25 cell widths in length hence the flow has Knudsen number 0.02 and Reynolds number 600. 

The results from this simulation are presented in figures 4-6. Figure 4 depicts the density 

contours using the same intervals employed in figure 1. The shock width in this solution 

is measured to be 5 cell widths. As expected, the shock in the rarefied flow is wider than 

in the near-continuum case. This is characteristic of rarefied flows and consistent with the 

greater mean free path and Knudsen number in this simulation. On looking at figure 5 it is 

at first surprising to notice there is no longer a wake shock, however this is merely another 

manifestation of the greater rarefaction or higher Knudsen number. The wake region is 

highly rarefied and .the mean free path in this region is great enough that the wake shock 

is completely washed out. Figure 6 is an expanded view of the stagnation region by the 

wedge. Comparing this with figure 3 provides a more visual understanding of the effect 

flow rarefaction has made on the shock. 

These results in addition to other results from simulations at differing Mach numbers 

and wedge angles indicate that this implementation is performing correctly. 
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Performance 

The simulation results presented here employed a total of 512k particles with some 

460000 particles actually in the flow and 45000 particles in the reservoir. The simulations 

were run for 1200 time steps to reach steady state and then time averaged for a further 

2000 time steps to generate the solution. Using 32k processors a run typically takes 

3.5 hours on the Connection Machine. For comparison with other particle simulation 

algorithms which scale linearly with the number of particles, it is useful to consider the 

average time to advance one particle through one time step. Excluding the reservoir 

particles, for this implementation that value is 7.2 psec/particle/timestep. By comparison, 

the corresponding fully vectorized implementation of this algorithm on the Cray-2 takes 

O.Sp~ec/particle/timestep~~. It should be noted that the Cray-2 implementation was hand 

vectorized with 30% of the code written directly in assembler, whereas the Connection 

Machine implementation was written almost fully in C' Version 4.3 with 5% of the code 

directly using C/Paris instructions expanded in line. 

The distribution of computational time within the algorithm is as follows: 

1) collisionles motion of particles (including boundary conditions)--14% 

2) sort-27% 

3) selection of collision partners-20% 

4) collision of selected partners-39% 

Figure 7 shows the computational time per particle per time step as a function of 

the total number of particles in the simulation. The interesting feature of this plot is the 

decrease in the per particle computational time with larger problems. This is a manifesta- 

tion of the decreased communications time for greater virtual processor ratios. The effect 

is most pronounced in going from a virtual processor ratio of 1 to a ratio of 2 because 

collision pairings are even with odd, hence for virtual processor ratios greater than one, 

communication in the collision routine is maintained within the physical processor. As 
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the ratio becomes still greater, the communications in the sorting routine become more 

efficient and there is again some improvement in the computational time. General com- 

munication, that is, communication between physical processors, must take place in the 

sorting routine when either the motion of particles in the flow or their arbitrary rearrange- 

ment for improved randomization forces them to change physical processors. For larger 

virtual processor ratios this becomes less common and there is a corresponding decrease 

in general communication. 

Future Work 

Future work on this project should proceed in two directions. One direction to be 

followed is in improving the performance of the code. For the most part this needs to 

await the delivery of C* Version 5.0. The newer software allows dynamic modification 

of the virtual processor configuration, this can be used to speed up the computational 

time spent to reach steady state. There is also a richer set of scan functions in the 

Version 5.0 software which may be used to decrease the time spent in identifying collision 

candidates. Furthermore, it should be possible to run simulations with lo6 particles just 

because of the increased usable memory (presently, 25% of the memory is reserved for 

back-compat ibilit y ). 

The other direction to be followed in future work is that of increasing the generality 

of the algorithm. Specifically, the boundary conditions should include no slip adiabatic 

and isothermal walls and allow bodies other than wedges to  be studied. The code should 

also be extended to 3D and the molecular model should ge generalised to allow power law 

interactions and relaxation into vibrational energy. 
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DENSITY CONTOURS FOR MACH 4 FLOW OVER A 30 deg WEDGE 

100 

Figure 1. Density contours for near continuum Mach 4 flow over a 30' wedge. 
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DENSITY SURFACE FOR MACH 4 FLOW OVER A 30 deg WEDGE 

Near Continuum 

Figure 2. Density surface for near continuum Mach 4 flow over a 30' wedge. 
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DENSITY SURFACE IN STAGNATION REGION 

Near Continuum 

Figure 3. Density surface in the stagnation region for near continuum Mach 4 flow over a 30’ wedge. 
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DENSITY CONTOURS FOR MACH 4 FLOW OVER A 30 deg WEDGE 

Figure 4. Density contours for rarefied Mach 4 flow over a 30' wedge. The freestream mean free path 
is 0.5 cell widths, corresponding Knudsen and Reynolds number are 0.02 and 600 respectively. 
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DENSITY SURFACE FOR MACH 4 FLOW OVER A 30 deg WEDGE 
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Rarefied 
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Figure 5. Density surface for rarefied Mach 4 flow over a 30' wedge. The freestream mean free path 
1.5 cell widths, corresponding Knudsen and Reynolds number are 0.02 and 600 respectively. 
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DENSITY SURFACE IN STAGNATION REGION 

Rarefied 

Figure 6. Density surface in the stagnation region for rarefied Mach 4 flow over a 30' wedge. The 
freestream mean free path is 0.5 cell widths, corresponding Knudsen and Reynolds number are 0.02 and 600 
respectively. 

25 



11 

10.: n a 
b) - 
b3 
E 1( .- e 
b) 
0 
- 
.- 5 9.: 
e 
0 

W a 9  

.d i! 
8.5 

3 8  a 

(d 
C 
0 .- Y 

E" 
6 7.5 

7 

PER PARTICLE COMPUTATIONAL TIME VS. TOTAL NUMBER OF PARTICLES 
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Figure 7. Computational time per particle per time step as a function of the total number of particles 
in the simulation. The computational time is ratioed by the number of particles actually in the flow, this 
number is 10% less than the total number of particles in the simulation. The size of the machine was held 
fixed, consequently the virtual processor ratio corresponds directly with the total number of particles in the 
simulation. 
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